Bioengineered materials with selective antimicrobial toxicity in ... - Military Medical Research

  • Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4(9):1432–42.

    Article  CAS  PubMed  Google Scholar 

  • Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun. 2021;12(1):2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar H, Yousefiasl S, Raza F. T-cell membrane-functionalized nanosystems for viral infectious diseases. Mater Chem Horizons. 2023;2(1):41–8.

    Google Scholar 

  • Abedon ST. Bacterial 'immunity' against bacteriophages. Bacteriophage. 2012;2(1):50–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, et al. Advances in antimicrobial microneedle patches for combating infections. Adv Mater. 2020;32(33):e2002129.

    Article  PubMed  Google Scholar 

  • Wang CY, Makvandi P, Zare EN, Tay FR, Niu LN. Advances in antimicrobial organic and inorganic nanocompounds in biomedicine. Adv Ther. 2020;3(8):2000024.

    Article  Google Scholar 

  • Li W, Thian ES, Wang M, Wang Z, Ren L. Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv Sci. 2021;8(19):e2100368.

    Article  Google Scholar 

  • Zhang X, Chen X, Yang J, Jia HR, Li YH, Chen Z, et al. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing Gram-positive bacteria. Adv Funct Mater. 2016;26(33):5958–70.

    Article  CAS  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020;30(22):1910021.

    Article  CAS  Google Scholar 

  • Arts IS, Gennaris A, Collet JF. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett. 2015;589(14):1559–68.

    Article  CAS  PubMed  Google Scholar 

  • Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1):25. https://doi.org/10.1128/ecosalplus.ESP-0001-2018.

    Article  Google Scholar 

  • Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev. 2022;26(1):17–47.

    Article  Google Scholar 

  • Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett. 2018. https://doi.org/10.1093/femsle/fny087.

    Article  PubMed  Google Scholar 

  • Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol. 2017;71:539–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghai I, Ghai S. Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist. 2018;11:523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benfield AH, Henriques ST. Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Front Med Technol. 2020;2:610997.

    Article  PubMed  PubMed Central  Google Scholar 

  • Porfírio S, Carlson RW, Azadi P. Elucidating peptidoglycan structure: an analytical toolset. Trends Microbiol. 2019;27(7):607–22.

    Article  PubMed  Google Scholar 

  • Rohde M. The Gram-positive bacterial cell wall. Microbiol Spectr. 2019. https://doi.org/10.1128/microbiolspec.GPP3-0044-2018.

    Article  PubMed  Google Scholar 

  • Rajagopal M, Walker S. Envelope structures of Gram-positive bacteria. Curr Top Microbiol Immunol. 2017;404:1–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta. 2016;1858(5):936–46.

    Article  CAS  PubMed  Google Scholar 

  • Doyle L, Ovchinnikova OG, Myler K, Mallette E, Huang B, Lowary T, et al. Biosynthesis of a conserved glycolipid anchor for Gram-negative bacterial capsules. Nat Chem Biol. 2019;15(6):632–40.

    Article  CAS  PubMed  Google Scholar 

  • Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol. 2020;62:853–65.

    Article  Google Scholar 

  • Gow NAR, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

    Article  PubMed  Google Scholar 

  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The fungal cell wall: candida, cryptococcus, and aspergillus species. Front Microbiol. 2020;10:2993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasim S, Coleman JJ. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med Chem. 2019;11(8):869–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater. 2020;32(18):e1904106.

    Article  PubMed  Google Scholar 

  • Valencia C, Martínez-Castañón GA, Martínez-Martínez RE, Loyola-Rodríguez JP, Reyes-Macías JF, Ora-Zarzosa G, et al. Bactericide efficiency of a combination of chitosan gel with silver nanoparticles. Mater Lett. 2013;106:413–6.

    Article  Google Scholar 

  • Antonelli M, De Pascale G, Ranier VM, Guaglianone E, Donellih G. Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. J Hosp Infect. 2012;82(2):101–7.

    Article  CAS  PubMed  Google Scholar 

  • Ehsan Z, Denise Wetzel J. John P Clancy BS, Nebulized liposomal amikacin for the treatment of pseudomonas aeruginosa infection in cystic fibrosis patients. Expert Opin Investig Drugs. 2014;23(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Scott Budinger GR. The good and the bad of antibiotics. Sci Transl Med. 2013;5(192):192fs25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masri A, Anwar A, Khan NA, Siddiqui R. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics. 2019;8(4):260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta. 2009;1788(8):1687–92.

    Article  CAS  PubMed  Google Scholar 

  • Bobone S, Stella L. Selectivity of antimicrobial peptides: a complex interplay of multiple equilibria. Adv Exp Med Biol. 2019;1117:175–214.

    Article  CAS  PubMed  Google Scholar 

  • Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355(7):666–74.

    Article  CAS  PubMed  Google Scholar 

  • Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527(7578):323–8.

    Article  CAS  PubMed  Google Scholar 

  • Scudiero O, Brancaccio M, Mennitti C, Laneri S, Lombardo B, De Biasi MG, et al. Human defensins: a novel approach in the fight against skin colonizing Staphylococcus aureus. Antibiotics. 2020;9(4):198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Joo J, Kang J, Kim B, Braun GB, She ZG, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng. 2018;2(2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces. 2018;10(17):14299–311.

    Article  CAS  PubMed  Google Scholar 

  • Barna JC, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol. 1984;38:339–57.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Song Z, Li S, Wu Y, Han H. One stone with two birds: functional gold nanostar for targeted combination therapy of drug-resistant Staphylococcus aureus infection. ACS Appl Mater Interfaces. 2019;11(36):32659–69.

    Article  CAS  PubMed  Google Scholar 

  • Vukomanović M, Žunič V, Kunej Š, Jančar B, Jeverica S, Podlipec R, et al. Nano-engineering the antimicrobial spectrum of lantibiotics: activity of nisin against Gram negative bacteria. Sci Rep. 2017;7(1):4324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan K, Jurado-Sánchez B, Escarpa A. Dual-propelled lanbiotic based janus micromotors for selective inactivation of bacterial biofilms. Angew Chem Int Ed Engl. 2021;60(9):4915–24.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lim SI, Shin SH, Lim Y, Koh JW, Yang S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega. 2019;4(13):15694–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Shang L, Lan J, Chou S, Feng X, Shi B, et al. Targeted and intracellular antibacterial activity against S. agalactiae of the chimeric peptides based on pheromone and cell-penetrating peptides. ACS Appl Mater Interfaces. 2020;12(40):44459–74.

    Article  CAS  PubMed  Google Scholar 

  • Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, et al. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J Am Chem Soc. 2016;138(34):10945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabbagh Moghaddam F, Romana BF. Application of microfluidic platforms in cancer therapy. Mater Chem Horizons. 2022;1(1):69–88.

    Google Scholar 

  • Raza F, Zafar H, Khan AU, Hatami K. T-cell membrane-coated nanomaterials in cancer treatment. Mater Chem Horizons. 2022;1(3):199–217.

    Google Scholar 

  • Zurawski DV, McLendon MK. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics. 2020;9(4):155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le H, Arnoult C, Dé E, Schapman D, Galas L, Le Cerf D, et al. Antibody-conjugated nanocarriers for targeted antibiotic delivery: application in the treatment of bacterial biofilms. Biomacromol. 2021;22(4):1639–53.

    Article  CAS  Google Scholar 

  • Alhmoud H, Cifuentes-Rius A, Delalat B, Lancaster DG, Voelcker NH. Gold-decorated porous silicon nanopillars for targeted hyperthermal treatment of bacterial infections. ACS Appl Mater Interfaces. 2017;9(39):33707–16.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Chen S, Gou X, Yang J, An J, Jin X, et al. Biodegradable supramolecular materials based on cationic polyaspartamides and pillar[5]arene for targeting Gram-positive bacteria and mitigating antimicrobial resistance. Adv Funct Mater. 2019;29(38):1904683.

    Article  Google Scholar 

  • Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 2020;6:100.

    Article  Google Scholar 

  • Onsea J, Soentjens P, Djebara S, Merabishvili M, Depypere M, Spriet I, et al. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses. 2019;11(10):891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ul Haq I, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I. Bacteriophages and their implications on future biotechnology: a review. Virol J. 2012;9:9.

    Article  Google Scholar 

  • Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses. 2018;10(8):397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopf J, Waters M, Kalwajtys V, Carothers KE, Roeder RK, Shrout JD, et al. Phage-mimicking antibacterial core-shell nanoparticles. Nanoscale Adv. 2019;1(12):4812–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hathaway H, Ajuebor J, Stephens L, Coffey A, Potter U, Sutton JM, et al. Thermally triggered release of the bacteriophage endolysin CHAPK and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J Control Release. 2017;245:108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dik DA, Fisher JF, Mobashery S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev. 2018;118(12):5952–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SJ, O'Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol. 2016;1(11):16162.

    Article  CAS  PubMed  Google Scholar 

  • Seefeldt AC, Nguyen F, Antunes S, Pérébaskine N, Graf M, Arenz S, et al. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat Struct Mol Biol. 2015;22(6):470–5.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol. 2018;9:1299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Hao C, Sun M, Xu L, Wu X, Xu C, et al. Peptide mediated chiral inorganic nanomaterials for combating Gram-negative bacteria. Adv Funct Mater. 2018;28(44):1805112.

    Article  Google Scholar 

  • Liu F, Ni ASY, Lim Y, Mohanram H, Bhattacharjya S, Xing B. Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug Chem. 2012;23(8):1639–47.

    Article  CAS  PubMed  Google Scholar 

  • Ebbensgaard A, Mordhorst H, Aarestrup FM, Hansen EB. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front Microbiol. 2018;9:2153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantelli A, Piro F, Pecchini P, Di Giosia M, Danielli A, Calvaresi M. Concanavalin A-Rose Bengal bioconjugate for targeted Gram-negative antimicrobial photodynamic therapy. J Photochem Photobiol B. 2020;206:111852.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li X, Li L, Zhang T, Zhang Q, Wu F, et al. Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria. Cell Res. 2019;29(9):711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruehle B, Clemens DL, Lee BY, Horwitz MA, Zink JI. A pathogen-specific cargo delivery platform based on mesoporous silica nanoparticles. J Am Chem Soc. 2017;139(19):6663–8.

    Article  CAS  PubMed  Google Scholar 

  • Storek KM, Auerbach MR, Shi H, Garcia NK, Sun D, Nickerson NN, et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc Natl Acad Sci U S A. 2018;115(14):3692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35–45.

    Article  PubMed  Google Scholar 

  • He X, Yang Y, Guo Y, Lu S, Du Y, Li JJ, et al. Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J Am Chem Soc. 2020;142(8):3959–69.

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci USA. 2020;117(4):1951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krom RJ, Bhargava P, Lobritz MA, Collins JJ. Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett. 2015;15(7):4808–13.

    Article  CAS  PubMed  Google Scholar 

  • Huma ZE, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, et al. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega. 2018;3(12):16721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kwon SJ, Wu X, Sauve J, Lee I, Nam J, et al. Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle-cell wall binding domain conjugates. ACS Appl Mater Interfaces. 2018;10(16):13317–24.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchido Y, Horiuchi R, Hashimoto T, Ishihara K, Kanzawa N, Hayashita T. Rapid and selective discrimination of Gram-positive and Gram-negative bacteria by boronic acid-modified poly(amidoamine) dendrimer. Anal Chem. 2019;91(6):3929–35.

    Article  CAS  PubMed  Google Scholar 

  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220(Pt B):600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):e1706759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Huang Y, Yan J, Li Y, Wang J, Yang YY, et al. Bacterial outer membrane-coated mesoporous silica nanoparticles for targeted delivery of antibiotic rifampicin against Gram-negative bacterial infection in vivo. Adv Funct Mater. 2021;31(35):2103442.

    Article  CAS  Google Scholar 

  • Zhu N, Zhong C, Liu T, Zhu Y, Gou S, Bao H, et al. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur J Pharm Sci. 2021;158:105665.

    Article  CAS  PubMed  Google Scholar 

  • Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial outer membrane vesicles: from discovery to applications. Annu Rev Microbiol. 2021;75:609–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeh M, Ahmed Y, Quinn J. Phosphate acquisition and virulence in human fungal pathogens. Microorganisms. 2017;5(3):48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibe C, Munro CA. Fungal cell wall: an underexploited target for antifungal therapies. PLoS Pathog. 2021;17(4):e1009470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96.

    Article  CAS  PubMed  Google Scholar 

  • Voltan AR, Quindós G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomedicine. 2016;11:3715–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009;69(3):361–92.

    Article  CAS  PubMed  Google Scholar 

  • Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, et al. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. Sphere. 2019;4(1):e00025-19.

    Google Scholar 

  • McLellan CA, Vincent BM, Solis NV, Lancaster AK, Sullivan LB, Hartland CL, et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol. 2018;14(12):135–41.

    Article  CAS  PubMed  Google Scholar 

  • Fedorova O, Jagdmann GE, Adams RL, Yuan L, Van Zandt MC, Pyle AM. Small molecules that target group II introns are potent antifungal agents. Nat Chem Biol. 2018;14(12):1073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang A, Qiu L, Chen M, Lu A, Li G, et al. Expedient discovery for novel antifungal leads targeting succinate dehydrogenase: pyrazole-4-formylhydrazide derivatives bearing a diphenyl ether fragment. J Agric Food Chem. 2020;68(49):14426–37.

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Bin SW, Zhu JJ, Long ZQ, Liu LW, Wang PY, et al. Novel 1,3,4-oxadiazole-2-carbohydrazides as prospective agricultural antifungal agents potentially targeting succinate dehydrogenase. ...

  • Comments

    Popular posts from this blog